
SpaceFusion:
A Multi-Server Architecture For Shared Virtual Environments

Hiroyasu Sugano� Koji Otani Haruyasu Ueda Shinichi Hiraiwa Susumu Endo Youji Kohda

Fujitsu Laboratories Ltd.

Abstract

We propose a scalable architecture for shared virtual environ-
ments, named SpaceFusion, which is designed to provide prac-
tical, large-scale services on the Internet. Here, the world is
divided into smaller chunks, called regions, and a region plays a
central role to obtain scalability and to realize the notion of Fu-
sion. SpaceFusion clients can get information on several regions
from possibly different servers at once, and the information is
fused and presented on the browser. We also introduce Chiba,
the prototype system currently being developed using Java and
the Liquid Reality VRML library for Java.
CR Categories. H.5.1 Multimedia Information Systems; H.5.3 Group
and Organization Interfaces; I.3.7 Three-Dimensional Graphics and Re-
alism: Virtual Reality
Keywords. Distributed Shared Virtual Environment, Client/Server
Model, Scalability, VRML

1 Introduction

The recent pervasive explosion of the World Wide Web has
shown the possibility of the Internet as an infrastructure for
building a global interactive virtual environment, or Cyberspace.
Exploring the possibility, an open process to standardize the
Virtual Reality Modeling Language (VRML) has started and is
being intensively developed on the Internet. Steady progress has
also been made in research on Distributed Virtual Environments,
and some have been implemented as experimental services on the
Internet.

While the notion of a cyberspace has been described in a
variety of ways, the WWW explosion made this a little more
concrete. We believe that the cyberspace of the future will not
be just a virtual world, but it will be combined together with
the real world synergistically. More specifically, we claim that
cyberspace will be an aggregate of digital cities, some of those
mirroring real cities in the following sense [7]:

� Cyberspace will mirror the external appearance of real
cities.

� Cyberspace will mirror the social activities in real cities as
well. It will serve as a 3D information viewer of real cities
and it will also support communities in real/virtual life.

�1-9-3 Nakase, Mihama-ku, Chiba-shi, Chiba 261, Japan
suga@iias.flab.fujitsu.co.jp

� Cyberspace will be customized for individuals to support
their everyday behavior. It will help each individual based
on his/her personal tastes or preferences.

The scope of this paper mainly lies within the second aspect of
cyberspace. Here, people can obtain useful information, make
reservations for concert seats, or contact their friends.

In this paper, we propose a scalable architecture for a shared
virtual environment, named SpaceFusion, which is designed to
provide practical, large-scale services in virtual space. Such
services should be integrated with various information sources
in real cities, those within virtual space, and some multimedia
communication services taking advantage of virtual space. To
realize this, our SpaceFusion architecture allows simultaneous
access to multiple servers from clients. Users can select relevant
information sources, and the provided set of information is fused
and presented to them.

Technically, SpaceFusion is an object-oriented architecture
based on a client/server model which allows multiple server
access. To solve the server bottleneck, it adopts region-based
communication filtering and client-side communication control
with the notion of Aura. The notion of regions in SpaceFusion
are similar to that of locales adopted by Spline[2], but has
differences in details. The 3D objects in SpaceFusion are called
entities and can be shared by multiple users with a mechanism
of proxies. Entities can have their own behaviors, some can be
moved, and their ownership can be transferred. Avatars are also
special entities. SpaceFusion is currently being refined within
our research project, and we are developing a prototype called
Chiba to show and evaluate the feasibility of our architecture.

In our paper, we present the basic concepts of the SpaceFusion
architecture and scenarios which will illustrate our motives in
Section 2. Section 3 is an overview of the architecture and
protocols in SpaceFusion. In Section 4, we briefly introduce the
prototype Chiba we are currently developing. We will discuss
the relationship with other works in Section 5 and conclude in
Section 6.

2 Basic Concepts and Scenarios

2.1 Issues To Be Addressed

When we provide practical, large-scale services in virtual space,
we have to address three important issues: performance, man-
agement, and stability.

Performance: This issue arises due to the capacity of the
machines, the network bandwidth, and the type of communication
and protocols. Assuming a client/server architecture with a single
server, if this server provides all the communication services,

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

this causes significant scalability problems on the number of
participants. Moreover, as 3D virtual space models are usually
huge, if it serves an entire 3D world model, it can no longer
be scalable. In contrast, a completely distributed architecture
without servers can scale more, but the bandwidth of the network
to which the client computers are connected is critical and the
communication protocol must be carefully designed to reduce the
network traffic. We have to balance the overall load to reduce
the network traffic and the computation load on the servers.

Management: This is a more serious matter in providing
practical services because it is related to the flexibility and
extensibility of the whole system. Practical services will be
composed of various information sources, and in general they
are possessed by different organizations. For example, a local
newspaper company knows about local affairs in the city, while
a weather forecasting company knows of the weather forecast for
several cities.

The entire city information cannot be covered by one infor-
mation source or one sole organization. Thus it is unrealistic
to put it into a single server from the viewpoints of both server
administrators and information providers. For the administrators,
registering and maintaining the practical information of all the
services is too much of a burden. For the information providers,
it is much better to hold the information at their sites than to give
it to the server for the security reason.

We also expect that an architecture providing such services
be open, that is, new application services can be easily added and
the present services can be modified or withdrawn without much
difficulty.

Stability: This is related to the stable usability of the system
for both users and administrators. One of the important problems
on stability is fault-tolerance because, for practical services in
particular, partial errors or deficiencies must not cause the whole
system collapse. Another important issue in practical services
is security. Virtual space on the Internet is a public area and
the system architecture should ensure security at an appropriate
level.

2.2 Basic Concepts

To solve the issues described above, we designed the SpaceFusion
architecture as follows:

� A client/server model,

� A number of information services provided by different
organizations at their own servers,

� Selective integration, or Fusion, of these information
sources at the user side based on his/her interests.

2.2.1 Client/server model

As stated above, a completely distributed architecture without
servers is more scalable than a server-centered architecture, but it
burdens each host with unnecessary communication overheads.
This also raises the problem of security because every host
must provide a direct connection to another host if it wants to
communicate with it.

By adopting a client/server architecture, a mechanism for
filtering unnecessary communications can be incorporated at the
servers. This can also ensure an appropriate level of security
because users can restrict personal information to be open to the
servers, and do not allow direct connections from other hosts
which they do not want.

Server1

Server2
Server3

Figure 1: Fusion of various information from different servers.

2.2.2 Various information services by different
servers

The management issue above tells us that a single server approach
will not suit practical, large-scale services. Therefore, it is quite
reasonable to assume that different servers will provide their own
information services on the Internet. Our architecture is designed
based on this assumption, and users will simultaneously select
several servers to get the information they want.

This also suits the decentralized nature of the Internet. The
success of the WWW is attributed to the fact that anyone can
become an information provider, that is, there is an equal opportu-
nity for producers and consumers. Our SpaceFusion architecture
aims for a similar degree of availability. As a WWW server, a
SpaceFusion server can be easily set up by information service
providers themselves. Because this does not assume any central-
ized managers, this will not cause serious management problems,
and more importantly, this conforms to the Internet policy.

SpaceFusion clients can connect to several servers simulta-
neously, and information from different servers are amalgamated
and presented on the browser. This is the notion of Fusion.

2.2.3 Fusion of multiple information sources

A concept of fusion in SpaceFusion architecture has three aspects.

Horizontal fusion: This is the fusion of small spaces provided
by possibly different servers, resulting in the seamless
construction of a large space.

Vertical fusion: This is the fusion of spaces provided by possibly
different servers, resulting in the overlaying of various
information on the same space.

Hyper fusion: This is the fusion of virtual space and information
from the real world.

Horizontal fusion allows spatial partitioning into smaller
chunks, each of which is managed by possibly different servers.
Thus, it enables local organizations to hold information about the
local areas by themselves. By vertical fusion, we can distribute
different kind of information into the appropriate servers owned
by different organizations. Hyper fusion is another kind of fusion,
and this fuses the virtual world and the real world. This must be
a key concept of the cyberspace in the future.

By these fusion, geographical information, traffic informa-
tion, and weather information provided by different organizations
can be viewed in the same scene. Figure 1 depicts a world where
three servers provide each parts of data. Consistency of the world
data does not have to be assured in the architecture level. This
is an application-level issue, and it is the responsibility of the
clients to select appropriate servers.

Figure 2: Fusing several regions from different servers.

2.3 Scenarios

The following two scenarios will best describe the power of
SpaceFusion.

I. Walking in Digital Town TOGETHER

1. Fujiko and Michiko are young ladies living in Chiba city
and they are good friends on the network. They often meet
in Digital Chiba and enjoy the digital life together, but they
have never met in real even though both live in the same
city. Today, Michiko invites Fujiko to her home in Digital
Chiba. As usual, they enjoy chatting.

2. Michiko says, “By the way, I have just accepted a marriage
proposal. Please come to my wedding party if you can.
I will introduce my fianc�e and myself to you.” Fujiko
quickly replies, “Congratulations! I’ll definitely go. It’s a
good chance to meet each other in person.” Michiko sends
the party invitation. Fujiko receives and merges the party
schedule into her personal schedule.

3. “But I have never been to the restaurant,” Fujiko continues,
looking at her schedule board on the screen. “I may get
lost. How can I reach the restaurant from Chiba central
station?” Michiko replies immediately, “OK, I’ll guide
you to the place now.”

4. Michiko fetches several recommended routes by contacting
a city guide server which offers customized traffic infor-
mation to the contractors. There is a charge for the service,
but Michiko often uses it because of its good quality. The
recommended routes illustrate several ways from Chiba
central station to the party place in Digital Chiba. Michiko
selects a route and begins to walk along it with Fujiko.

In this example, two city servers1 are used. One city server
maintains a collection of regions which forms the skeleton of
Digital Chiba. The other city server reports traffic information as
a big region. The big region is FUSED over the regions of Digital
Chiba by SpaceFusion as in Figure 2. Region access information
could be transferred from a browser to another and thus the traffic
information could be shared between people.

1A server in SpaceFusion is sometimes called a city server because cities are
suitable units provided by servers.

II. Shopping for Household Goods AT HOME

1. Michiko and her fianc�e are now preparing for their new
life. First of all, they rent an apartment from a real estate
agent. They also get a precise 3D model of the room from
the agent. They now plan to buy a nice carpet for their
new living room. As they are Internet-age persons, they
immediately enter Digital Chiba to shop.

(Intermission) If you have a favorite shop, then you can go to
the shop directly. Otherwise, you must find an appropriate
shop, but it is a waste of time to tour virtual shops in a digital
city. Open Community proposal[1] describes a mechanism
for selecting a shop in a virtual mall. In the proposal, a
virtual mall could have an auction mechanism whereby the
right to open shops in front of the customers are sold to
potential virtual shop owners. When the customers stand
at the front gate of the virtual mall, they will see the shop
of the auction winner. However, there is no assurance for
the customers that this shop is the best for their shopping
needs. The problem is that the process of the auction is not
visible to them and there is no chance for them to take part
in the process. We propose a new way for shopping in the
digital space that alleviates this problem.

2. First of all, Michiko and her fianc�e set up the 3D model
of the new room in Digital Chiba as a shopping spot. As
they want a carpet to fit the room, it is the best place for
shopping in this case. There is no need to measure the
room’s length and width.

3. Then they contact a yellow pages server and get a list of
carpet shops. They select two or three shops and call up
the shops’ salesavatars to the room, more precisely, to its
3D model where the avatars of Michiko and her fianc�e are.
The negotiation takes place between those avatars.

4. The salesavatars greet them and notice the existence of
competitors. To win business they must have more aggres-
sive and flexible bargaining strategies than their competi-
tors. Michiko tells them, “We want to buy a nice carpet to
make this room feel comfortable.”

5. The salesavatars create customized sales floors to display
their carpets to recommend, and the newly created sales
floors are fused with the room where the avatars are stand-
ing. Michiko, her fianc�e, and the owner salesavatar can see
the fused sales floors. But other competing salesavatars
cannot see their rivals’ sales floors, though they can see
the negotiation process or on-going conversation between
the customers and the competitors. This configuration
can keep the adopted bargaining strategies secret from the
competitors.

6. Michiko and her fianc�e evaluate the recommended carpets
one by one in their room, checking the fitness of each
carpet to the room with their own eyes. Note that they can
directly compare carpets in one shop with those in another.
This benefit is never achieved in real shopping, or even
by the Open Community approach. Our approach is quite
similar to catalog shopping, but is more sophisticated.

7. Finally they decide to buy one of the recommended carpets.
This means they also get its 3D model. The carpet itself
will come soon, but even before the arrival, they can spread
the carpet in the room trying the best layout.

In this example, the regions of a room and the sales floors
in the shops are FUSED by SpaceFusion, while salesavatars

Figure 3: Creating a customized shopping spot.

just ENTER or visit the room region, as illustrated in Figure 3.
Therefore the salesavatars can see and talk to one another and
each salesavatar can see its own sales floors, but cannot see those
of rivals.

3 Overview of SpaceFusion Architecture

Now we describe the technical details of the SpaceFusion archi-
tecture.

3.1 Entities and Regions

In SpaceFusion, an object is the unit of computation and commu-
nication. Thus it is an object-oriented architecture and it actually
implements management of a distibuted object-oriented database
as in Spline [2].

Entities. Among all the objects which constitute the architec-
ture, the objects appearing in the world are called entities. All
visible objects, including buildings, pieces of furniture, cars, and
avatars are entities. Invisible objects without 3D shapes can be
entities as well. Each entity is owned and controlled by a client.

Entities can send and receive messages, they can have their
own behaviors, and they can migrate. Thus they are units of
communication, behavior, and distribution in SpaceFusion. An
entity is composed of a VRML 3D model, its behavior described
in a scripting language like Java, and other attributes including
its name, creator, avatar/product information, and so forth. The
state of an entity includes the region containing it, its position
and orientation in the region, and its owner.

Regions. Even though we adopt a multiple server architecture,
each server will easily cause a bottleneck if the entire world
served by it is dealt with as one chunk. To solve this problem,
we partition the world into several smaller chunks called regions.

Regions are linked to each other with a contiguity relationship,
which gives the region its neighbors, possibly not spatially
contiguous (Figure 4). The relation is usually defined statically,
but some regions An entity in the world is contained in exactly
one region, and before that, it must enter the region. As some
kind of entities like avatars and bots can move around, such an
entity may dynamically change the region containing it. Thus, it
may enter a new region and exit from the old one. Only entities

Figure 4: Contiguity relationship among regions.

contained in a region can be displayed in a client as contents of
the region.

A region plays an important role in SpaceFusion, because
it serves a primary unit of fusion. A region is a unit of
communication and sharing of the world, thus the world data
is sent to each client per region and the amount of the data
sent at once is greatly reduced. The position and orientation
information of avatars or bots is exchanged only among clients
watching the region in which they are contained. This reduces
the communication traffic between the server and the clients very
much.

The notion of regions has been used by several researches
on virtual environments. The notion of locales in Spline [2], or
regions in Open Community proposal [1], is very similar to our
notion of regions. It also serves a unit of communication, and
each locale corresponds to a multicast address for communication
among the locale and the objects in it. We do not adopt IP
multicast because it is not reliable, and it may cause a serious
consistency problem. Spline gives the visibility a primary
importance in defining a neighboring relation. It is useful to
give the relation automatically, and we can use such a mechanism
in the world creation phase. NPSNET[9] also uses similar notion
of regions, called Area Of Interest, but our notion is more flexible.
SpaceFusion allows different regions to occupy the same space,
in this case, a client just select either to watch. A region can be
attached to an entity to realize a nested region which can move
like tour buses.

3.2 Clients and Servers

It is useful to divide the function of a client to clarify it. A client
plays two main roles in our architecutre. One is to receive the
data of the world, or to just watch the world, and the other is to let
its entities participate into the world, or in other words, to deliver
entities. Remember that an entity is owned by one client.

A watcher is a client which monitors the worlds. It is a major
role of browsers. A deliverer is a client as an owner of entities
and it controls these entities in the worlds. A browser which can
be used to control an avatar has this aspect. Usually a client or
a browser in SpaceFusion has both capabilities, but a client with
just one capability is also allowable. A client that acts just as a
watcher can obtain information from a world, like ghost-mode in
Habitat. A client that acts just as a deliverer provides world data
and services. The latter may be a typical client of an information
service provider.

Check-in and check-out: watching regions. In order
to obtain the world information, or to watch the world, a client
must check in to regions. Here check-in and check-out are
primary notions in protocols between clients and regions. When
a client takes part in the world, it checks in to the region of the
entry point first, and then it obtain the world data.

The essence of the notion of Fusion lies in just a simultaneous

watch to multiple regions possibly provided by different servers.
By checking in the regions contiguous to the current one, a client
can watch several regions at the same time as a single large
space. Users watching the scene will not usually realize the
region borders. As the viewpoint/avatar moves, it may go across
a region border. Then, the client may check in a new region
and check out another region it has been watching. The client
repeatedly checks in and checks out according to the movement
of the viewpoint/avatar, and a user just experiences continuous
changes in the world scene.

Connecting to servers. When a client connects to a server
at first, after obtaining the host name and the port number of
the server, it tries to establish a TCP connection with the server.
Having established the connection, they exchange identification
information. Connections to different servers are allowed, and
the disconnection from some of those is possible at any time.

Because we want entities to be able to move among several
worlds served by different servers, they must be globally identi-
fied. To do that, our architecture gives a real name to an entity,
which is globally unique. The real name is given to an entity
when its owner client connects to a server for the first time using
the identification information. Given a real name, an entity can
exist in the SpaceFusion worlds.

A server and a client establish a connection for SpaceFusion
protocol, which will be explained later, when the corresponding
client proxy object is created in the server and the corresponding
server proxy object is created in the client. The server and the
client communicate with each other through these proxy objects.

Proxies: sharing entities. As stated above, each entity is
owned by a client in SpaceFusion. The owner client of an entity
has its substance, the object with all the information of the entity.
Before the client connects to the server, this entity exists only
in the client as the substance object. Entities can be shared by
several clients by distributing their proxy objects to the servers
and the clients. When a client owning an entity connects to a
server, the entity creates its master proxy on the server and puts
it in a required region server. Clients watching the entity must
have its slave proxy.

Figure 5 illustrates the server and clients connect through
the client/server proxy objects and how entities are shared using
master/slave proxies.

Aura management by clients. In addition to adopting
regions, another point to resolve the server bottleneck is Aura
management at the client side. The traditional client/server design
of a distributed virtual environment takes complete control of
communications at the server side, causing a server bottleneck.
Since we have seen a drastic increase in PC computing power,
we should transfer some of the duties to the client PCs.

The notion of Aura is used in DIVE [4] and Community
Place [5, 8]. It controls communication among avatars and
other objects based on their capabilities, their own states and
the distances among them. Although it enables a reasonable
communication control among entities, but its computational cost
is usually expensive. It is reasonable to move this functionality
to clients.

As a client watching a region knows the position and other
Aura-related information of the entities within it, it can calculate
the distances between these other entities and the client’s avatar.
Note that the distance is usually calculated in consideration of
some external and internal conditions of avatars/entities. If the
distance is sufficiently small, it sends more detailed information
like gestures and facial expressions to the corresponding client.

User

Client
System Module

API

Controller

Aura
Manager

Server

Fusion
Manager3D World

Data

Server Proxy

Substance
DB

Slave proxy
DB

Server proxyServer proxy

Renderer

Figure 6: The Structure of a Client.

3.3 SpaceFusion Protocols

SpaceFusion has a set of object-oriented protocols to realize
shared environments and various operations within these envi-
ronments. The Basic Object-Oriented Protocol (BOOP), which is
built on TCP/IP, provides a basic mechanism to send and receive
messages between objects in servers and clients. The SpaceFu-
sion protocol (SFP) is built on the BOOP. This protocol realizes
the essential functions of the architecture, including clients watch-
ing regions, entities moving around regions, and sharing entities.
Working with the basic components like substance/proxy objects
of entities, region managers, and fusion managers, it embodies
the 3D shared virtual environment.

We assume the SpaceFusion Application Specific Protocol
built on BOOP and SFP. This protocol will be provided by
application creators, and it can utilize the external protocols. The
direct communication between clients is allowed at this level.

Structure of a client and a server. A client consists
of a client system module, a fusion manager, world data and a
renderer, a controller, and an Aura manager (Figure 6). The
client system module is an object base manager, and manages the
substances and slave proxy objects of entities. It also establishes
connections to servers, and controls communication with servers
using the server proxy objects. A fusion manager manages
regions it is connecting to, i. e. watching, and the region where
its avatar is. According to the motion of the viewpoint and the
avatar, it decides when this client checks in to and out of regions,
and whether or not to make the avatar enter the new region.
A controller gives a mechanism of user interface to control the
avatar and send messages to entities. An Aura manager checks
the collision of Auras of the avatar and other entities based on the
type of Aura.

A server consists of a server system module, a city manager,
a set of region managers, and a name server (Figure 7). A server
system module manages connections to clients, communication
with clients using client proxy objects, and it controls master
proxies of entities contained in the regions it has. A city
manager manages the regions it has, and each region manager
administers the entity data such as the positions and the entity’s
entry into and exit from the region. A name manager manages
the correspondence of the names of entities and their ID’s.

Server

Client 1
Client 2

Client 3

Client proxy
 object

Client proxy
 object

Client proxy
 object

Region
manager

Region
manager

Region
manager

Substance object
Master proxy object
Slave proxy object

Cone1

Server proxy
 object

Cylinder1

Server proxy
 object

Cube1

Server proxy
 object

Figure 5: Sharing entities.

Server System Module

API

Client

Name
Manager

Client Proxy

Master proxy DB

Region
Managers

City
Manager

Figure 7: The Structure of a Server.

Check-in protocol. When the fusion manager of a client
decides to check in to a region, it orders the system module to
send a checkInRegion message to the serer with the ID of the
region as its argument. When the server system module receives
the message, it orders the region manager the check-in. Then, the
region server sends messages to the client to create all the slave
proxies of the entities contained in it, and the client can watch
the region. When a client checks out a region, it asks the region
server to check out, and the region server send messages to the
clients to delete the slave proxies of entities in it.

When a client connects to a server, it establishes the connec-
tion as stated above, and it checks in some regions in a server as a
watcher. It also behaves as a deliverer, thus sending messages to
create master proxies of the entities it has. These messages must
contain the identifiers for the VRML file of 3D models and/or
program files for behavior scripts. Those files can be provided
by URLs so that caches work effectively, or may be provided on
CDROM.

Entering regions. When an entity enters a region, its master
proxy object asks the new region for its entry. After granting
permission to enter, the master proxy sends messages to all the
clients watching the new region to create slave proxies of the
entity. Having received the message, the clients create the slave
proxies. The protocol for an entity to exit from a region is
basically a similar procedure.

A client usually watches both regions which the avatar entity
enters and exits from. In this case, an entity exits from the old
region after entering the new region. Otherwise, the slave proxy
of the entity in the client must be deleted once and it needs to be
created again. The identity of an entity is always checked, and
thus two slave proxies for the same entity never be created.

Communication between clients. When a client rec-
ognizes other avatars, it is watching the region in which these
avatars are. If it has an avatar of itself, it can communicate with
other clients owning these avatars.

A client watching the region has a substance of the avatar of
itself and slave proxies of other avatars. It also gets information
of the positions and orientations of avatars in the region from
the region manager of the server. The Aura manager in the
client calculates the distances of its avatar and other avatars,
and decides which avatars can be accessible through the medium
under consideration. To communicate with an avatar, a client
sends a message to the slave proxy of the avatar, and it is
forwarded to its substance in another client through the server.
Figure 8 depicts how the clients communicate each other through
the substances and slave proxies of entities.

4 Chiba: The Prototype System of SpaceFusion

We are currently developing a prototype based on the SpaceFu-
sion architecture. The name is Chiba. Chiba is being developed
using Java provided by Sun Microsystems and the Liquid Reality
VRML library for Java released by Dimension X.

The development of Chiba is still continuing, so some of the
functions described above have not been implemented yet. For
example, the communication among entities, Aura management,

Watcher

Message

Deliverer

VRML Space

Substance

Client

VRML
event

Message

Message

Viewpoint

WatcherDeliverer

VRML Space

Client

Server
region

Deliverer

Substance

User

Substance

Slave
Proxy

Slave
Proxy

Slave
Proxy

Server

region
region

region

User

Figure 8: Communication between clients.

and regions attached to entities have not been implemented yet.
The current prototype consists of the following components:

Server: This prototype only serves a fixed number of regions
and the contiguity relationship among region are restricted
to a spatially contiguous one.

Browser: The position and the orientation of the avatar, or
the viewpoint, can be changed using the keyboard. A
headlight function, a wide-view mode, selectable levels
of rendering/texture quality, and connection to multiple
servers have been implemented.

Server-embedded client: Clients embedded in the server pro-
cess and provide scalable entities. As each entity must be-
long to a client, entities provided by a server like buildings
and geographic models are served by a server-embedded
client.

Entity: The following type of entities are currently implemented.

1. Basic entities, which are generic for all entities. The
position and the orientation are can be shared among
clients.

2. Scalable entities, whose size is also sharable. Im-
movable entities like buildings are usually this kind.

3. Bounce entities, which move around the world.

4. Human entities, which have human-like figures. An
avatar is usually an entity of this type. At present, we
have only robot-like avatars.

Figure 9 and 10 are screen images of Chiba. Each illustrates
the example scenarios described earlier. Browers used in these
examples are displayed in wide-view mode with three windows.
The viewpoint orientations of the right and left windows make
an angle of 45.0 degrees with that of the center window. The
advantage of the wide-view mode browser is well understood
by considering a group walk talking each other. We have
implemented the key functionality of a server and a client, such
as the fusion of regions provided by different servers. But,
communication between clients is not implemented yet, thus the
whole scenarios cannot be realized by the present system.

Figure 9 is a screen shot of Michiko’s browser in the scenario
“Walking in Digital Town TOGETHER”. The main body of
Michiko ’s avatar is unseen, but her raised right arm is visible
in the rightmost screen, which points in the direction to go. The
leftmost avatar which looks in the direction is Fujiko’s avatar.
On the road, the selected recommended route is depicted as an
overlay.

Figure 10 is a screen shot of Michiko’s browser in the scenario
“Shopping for Household Goods AT HOME”, which shows a
temporarily created shopping spot. An avatar in the center screen
is her fianc�e and now checks a carpet spread in the room. The
leftmost and rightmost avatars are salesavatars from two different
shops. Their customized sales floors are placed next to the room.

5 Related Works

Our research is related to some of the important works on
distributed virtual environments currently published.

5.1 Spline

Spline is a platform for a scalable shared virtual environment
developed by MERL[2]. As stated earlier, it is a distributed
object-oriented architecture and the notion of locales is very
similar to that of regions in SpaceFusion. An experimental virtual
world called Diamond Park is created based on Spline, which has
notable features like the whole body interface with bicycles, rich
audio interface including speech communication, and the obelisks
which embody non-Euclidean connectivity between locales.

A locale is managed by a locale server, each of which has
its own Multicast address for communication among the objects
in the locale. Our SpaceFusion protocols are built on the TCP
connection, which ensures the packet reachiability. Our choice
costs a little heavier traffic, but consistency among the states of
entities can be ensured, which is quite important in the practical
services including electronic commerce. At the same time,
however, we have to consider more seriously on the QoS of
multimedia services.

The neighbor relationship of locales is statically defined
mainly based on visibility. The contiguity relationship of regions

in SpaceFusion is usually defined statically as well, but, in some
cases including regions attached to the moving entity, it can be
determined dynamically. Visibility is not the only principle for
the contiguity relationship, so jumping to other unkown places is
allowed in our architecture. The notion of fusing multiple regions
from different servers is a novel feature of SpaceFusion.

5.2 NPSNET

NPSNET[9] is a global simulator for military purpose imple-
mented with the DIS protocol. The world is statically divided
into chunks, based on the notion of Area of Interest. These are
fixed throughout the simulation. An object in a region is shared
by active replication by all the client in the region. A region is
implemented to have a multicast address as in Spline. When a
client changes something in a region, the change is broadcasted
to all the browsers viewing the region via its multicast address.
Dead reckoning mechanism is used to prepare the loss of the
multicast packets and to reduce the network traffic.

Because this is limited to simulation purposes, there is no way
to set the permission to control objects owned by other browsers.
As region prefetching is possible, the user can see contiguous
regions if necessary. However, from the nature of this division,
it is impossible to make a more complex regional structure, for
example, two different regions which occupy the same space
which SpaceFusion allows.

5.3 DIVE

DIVE[4] is another pioneering work on distributed virtual envi-
ronment. It was developed by SICS as an experimental system for
CSCW utilizing 3D virtual environment. In addition to using the
notion of Aura, more minute control with the concepts of focus,
nimbus and awareness is incorporated for multi-user interaction.
A whiteboard, a conference table, and a podium are interesting
components for multimedia communication.

DIVE is based on peer-to-peer communication with no
servers, and for sharing objects, DIVE uses active replication
and reliable multicast protocols. This may be because DIVE
was designed as a system on a LAN, thus it will not have much
scalability when we think of a wide area service.

DIVE uses the notion of worlds. Each world corresponds to
a multicast address, and the worlds are completely disjoint. As
worlds are larger units than regions in SpaceFusion and DIVE
does not have a prefetching mechanism of worlds, it will not be
effective to reduce the latency in visiting worlds.

5.4 Community Place

Community Place[5, 8], which used to be called Cyber Passage,
is a system for network virtual reality based on VRML2.0.

Community Place has three different types of 3D objects:
A) an avatar, B) a usual 3D object, and C) a 3D object with
an application object (AO). An avatar is controlled by a client
and an object in a type C is controlled by an application object.
Basically, Objects with AO correspond to entities in SpaceFusion.
The states of these objects can be fully shared, and they can appear
and disappear in the world dynamically.

The architecture of Community Place has no notion of regions,
and it uses Aura to obtain the scalability. Aura can provide a good
control mechanism of communication between clients, but the
collision detection of Aura is performed by the server, which may
limit the scalabitliy on the number of clients. Community Place
provides World Location Service as a name service of worlds.
This may be used to get the scalabitliy, but SpaceFusion provides

more a flexible and effective mechanism: fusion of regions from
different servers.

6 Conclusion

We have described a scalable multi-server architecture for shared
virtual environments SpaceFusion. In SpaceFusion, the space of
the world is divided into smaller chunks called regions, and they
play the important role as units of fusing space and resolving
the communication bottoleneck. Entities are basic objects in
the 3D world. They can have their own behavior and move
around regions and servers. This mechanism is realized by the
SpaceFusion architecture and protocols. We have shown the
overview of those in this paper.

We are developing a prototype system called Chiba based
on the SpaceFusion architecture. While the current status of
our research is in the beginning stage, some of the important
mechanism are not implemented yet, including communication
among participants, the Aura management, and regions attached
to entities. The evaluation is very important in this kind of
architecture for practical services, but it is difficult without a
suitable methodology. We have just started building such a
methodology for an evaluation of this kind of systems.

SpaceFusion will serve as a test bed for practical multi-user
shared virtual environments. We are also investigating possibility
of our contribution to VRML3.0 for shared worlds, in a file format
describing entities and worlds, application interfaces, or a level
of protocols.

References

[1] D. Anderson, D. Greening, M. Ma, M. Mar-
vit, and R. Waters, “Open Community Overview”,
http://www.merl.com/opencom/, November 5, 1996.

[2] J. W. Barrus, R. C. Waters, and D. B. Anderson, “Locales and
Beacons: Efficient and Precise Support for Large Multi-User
Virtual Environments” MERL Technical Report TR95-16a
1996.

[3] D. Gelernter, “Mirror Worlds: Or the Day Software Puts the
Universe in a Shoebox... How it will Happen and What it
will Mean.”, Oxford University Press, 1991.

[4] O. Hagsand, “Interactive MultiUser VEs in the DIVE Sys-
tem,” IEEE Multimedia Magazine, Vol 3, Number 1, 1996.

[5] Y. Honda et al., “Extending WWW to support Multi-user
Interactive 3D environment,” VRML ’95, 1995.

[6] W. A. Kellogg and J. M. Carroll, “Making Reality a Cy-
berspace”, In Cyberspace: First Steps, M. Benedikt editor,
MIT Press, chapter 15, 1991.

[7] Y. Kohda and M. Sonobe, “Cyberspace on the Web: Mirror
Worlds of Real Cities”, FUJITSU Sci. Tech. J., vol. 32, no. 2,
December 1996.

[8] R. Lea et al., “Technical Issues in the Design of a Scalable
Shared Virtual World,” Sony Technical Report SCSL-TR-95-
039, 1995.

[9] M. R. Maccedonia et al., “NPSNET: A Network Software Ar-
chitecture for Large-Scale Virtual Environments,” Presence
Volume 3, Number 4, 1994.

Figure 9: Screen image of Chiba: Walking in Digital Town.

Figure 10: Screen image of Chiba: Shopping at Home.

